目 录

第1	章	概	述1	
	1.1	主要	要特性1	
	1.2	技ィ	术参数2	
第 2	章	面板	示意图3	
	2.1	仪者	器前面板示意图3	
	2.2	仪者	器后面板示意图5	
第3	章	使用	前的准备6	
第4	墇	操作	说明7	
	4.1	测量	量显示界面(仪器主界面)7	
	4.2	参数	女设置界面9	
	4.3	系统	充设置界面10	
	4.4	系统	充信息界面12	
	4.5	注意	章事项及说明14	
第 5	章	接口	说明15	
	5.1	信	号接口说明(HANDLER 口)15	
	5.2	RS	232 指令格式17	
第6	章	命令	参考	
	6.1	简	介20	
	6.2	符号	号约定和定义	
	6.3	命令	令结构20	
	6.4	命令	令缩写规则21	

	6.5 命令题头和参数	21
	6.6 命令参考	22
附录		.32

版本历史:

本说明书不断完善以利于使用。

由于说明书可能存在错误或遗漏,仪器功能的改进和完善,技术的更新及软件的升级, 说明书将做相应的调整和修改。

请关注您使用软件的版本及说明书的版本。(Ver 2.1/2021.11)

第1章 概 述

ZC2516 系列智能低电阻测试仪专用于测试各种电阻,带触摸功能的 24 位色 4.3 英寸 彩色液晶屏,操作简单,测试速度快,适用于各种电阻设计、检验、质量控制和生产测试。

本机附加三档分选功能。在分选状态时,可选择显示电阻值或百分比值,且可依设定值 判断电阻值的太大,太小或为良品。在仪器后面板同时有分选接口,使能该接口启动信号, 使仪器进行测量,测试结果同时由后面板该接口输出,通过此信号接口使本仪器可接于元件 机械处理设备而进行自动测试。

另外,本机有 USB 接口,面板功能可完全由电脑控制,测试结果亦可通过 USB 接口送回 电脑保存,或者数据直接存入 U 盘保存。

1.1 主要特性

◆ 电阻测试范围宽:

ZC2516: 20mΩ~2MΩ,九个测试档(1uΩ~2MΩ)。 ZC2516A: 200mΩ~200kΩ,七个测试档(10uΩ~200kΩ)。 ZC2516B: 20mΩ~20kΩ,七个测试档(1uΩ~20kΩ)。

- ◆ 测试速度可变: 慢速 5 次/秒, 中速 10 次/秒, 快速 20 次/秒。
- ✤ 基本精度: ±0.05%±2字。
- ◆ 两种显示方式: 电阻值直读或百分比值。
- ◆ 分选功能: LOW, PASS 1, PASS 2, PASS 3, HIGH, Handler 及讯响输出。
- ◆ USB 接口功能。
- ◆ U盘接口功能。
- ◆ 面板按键清零功能。

1.2 技术参数

串积		20	200	2	20	200	2	20	200	2
	里住	mΩ	m Ω	Ω	Ω	Ω	kΩ	kΩ	kΩ	MΩ
	ZC2516A	无	$\pm 0.1\% \pm 3$			± 0.0	$5\% \pm 3$			无
精度	ZC2516B	$\pm 0.2\%$ ± 3	$\pm 0.1\% \pm 3$		$\pm 0.05\% \pm 3$					无
	ZC2516	$\pm 0.2\%$ ± 3	$\pm 0.1\% \pm 3$		$\pm 0.05\% \pm 3$					
开	路电压		<1.0V					< 5	V	
	八动动动	1	10	100	1	10	100	1	10	100
	刀形平	uΩ	uΩ	uΩ	mΩ	mΩ	mΩ	Ω	Ω	Ω
温	昆度系数	100ppm				50pp	m			

注:环境条件:18℃~28℃,RH≤75%。

- ▶ 显 示: 最大 19999 字, 4.3 寸彩屏+触摸
- ▶ 工作模式: 连续/单次
- ▶ 测 试: 4端(2根电压检测端,2根电流驱动端)
- ▶ 量 程: 自动/手动
- ▶ 测量速度: 快速 20 次/秒, 中速 10 次/秒, 慢速 5 次/秒
- ▶ USB 接口: 所有前面板的功能都能远控
- ➢ Handler : START, PASS, HIGH, LOW signals
- ▶ 环 境: 工作温度: 0~40℃,存储温度: -40℃~+75℃
- ▶ 工作湿度: 0~75% R.H.
- ▶ 电 源: 220V/50Hz
- ▶ 重 量: 4kg

第2章 面板示意图

2.1 仪器前面板示意图

2.1.1 电源开关

打开或者关闭仪器电源。

2.1.2 型号

仪器的型号以及产品名称。

2.1.3 LCD 液晶显示屏/触摸屏

480×272 彩色 TFT LCD 显示屏/触摸屏,显示参数的设置、测试条件以及测试结果等; 触摸屏用于输入设置参数。

2.1.4 PASS 指示灯

测试判断通过, LED 指示,分选结果指示。

2.1.5 FAIL 指示灯

测试判断失败, LED 指示, 分选结果指示。

第3页

2.1.6 光标控制键以及确认键

光标控制键用于在 LCD 显示页面的域与域之间移动,当光标移动到某个域,该域在液晶显示器上为反橙色显示。更新修改值时,按确认键完成修改。

2.1.7 TRIG 键

此键为触发键,仪器在触发模式的时候,可按此键可启动仪器测量。

2.1.8 MEAS 键

MEAS 键用于切换主屏显示数据,在任意状态下,按 MEAS 按键,均回到仪器测试 界面。

2.1.9 **0 ADJ** 键

此键为清零键,按此键对测试线或测量夹具进行短路清零。(清零具体要求详见第12页)

2.1.10 PAGE 键

此键为界面切换键,按此键则仪器界面在:测量显示、参数设置、系统设置以及系统 信息四个界面中,按顺序切换。

2.1.11 测试端

四端测试端。用于连接四端测试线,对被测件进行测量。测试线的插头颜色和箭头指 示要和面板上的插孔一一对应起来,否则可能会引起测量结果异常

2.1.12 USB 接口

用于连接 U 盘存储器,进行文件的保存与调用。

2.2 仪器后面板示意图

图 2.1 仪器后面板图

2.2.1 电源插座

用于输入交流电压。

2.2.2 保险丝座

用于安装电源保险丝,保护仪器。

2.2.3 USB 接口

用于计算机与仪器间的通讯。

2.2.4 HANDLER

通过 HANDLER 接口,可方便地组成自动测试系统,实现自动测试。仪器通过该接口输出比较结果信号和联络信号,同时通过该接口可以输入外部触发信号。

2.2.5 接地端

该接线端与仪器机壳相连。

2.2.6 号码纸

标明仪器的出厂编号。

2.2.7 RS232 接口

实现与电脑串行通信。

第3章 使用前的准备

- ▶ 小心打开仪器的运输包装箱,搬动时需小心,防止坠落伤人。
- 应将仪器水平放置在坚实牢固的座架上,仪器下方与桌面间不能有高于机脚的物品,以 防外力伤及对仪器内部电路造成损坏。
- 本仪器没有特殊的防水、防潮设计,为了使仪器能长时间安全正常地工作,不能将它置 于潮湿环境下储存或工作。
- ▶ 准备一个带接地线的 220V 单相交流电插座,插座的电流负载能力不小于 10A。
- 用粗导线(电流容量不小于 20A)将仪器背板上的保护地与工作间的保护地线可靠连接。用配置的电源线将仪器与电源插座接好。
- > 仪器特别是连接被测件的测试导线应远离强电磁场,以免对测量产生干扰。
- 请不要在多尘、多震动、日光直射、有腐蚀气体下使用。不要在有腐蚀气体象硫酸、雾 或者类似的东西的环境中使用仪器。这可能会腐蚀导线、连接器,形成隐患或者连接缺 陷,会导致故障、失效甚至是火灾。
- 通过仪器面板上的电源开关接通仪器电源,液晶显示器亮起后先显示开机界面,再进入 测试主界面,此时需预热机器 5~10 分钟后,再进行测量。
- ▶ 请勿频繁开关仪器,以免引起内部数据混乱。

第4章 操作说明

4.1 测量显示界面(仪器主界面)

在此界面中配合光标键选择需修改的参数,手指触摸修改;测量显示界面如下图所示:

图 4.1 测量显示界面 (仪器主界面)

界面说明:

- ◆ 时 间:显示当前的时间;
- ✤ <测量显示>: 提示该界面为【测量显示】界面;
- ✤ 檢 发:可设置为自动或手动;自动为仪器根据测量速度进行测试,手动则需配合 面板 TRIG 键进行触发,按一次测一次;
- ❖ 速 度:可设置为慢速、中速或快速;
- ✤ 比较方式:可设置为绝对值或百分比;
- ◆ 量 程:可设置为自动或手动,手动档配合档位+、档位-使用;
- ✤ 讯 响:可设置关闭、合格或不合格;分别表示关闭讯响功能、被测件合格时讯响 或被测件不合格时讯响;
- **◇ 清零开关**: 可设置为关闭或打开; 表示打开或关闭清零值;
- ✤ R : 显示电阻测试值,在测试范围内显示正常测试数据;
- ◆ Cmp :显示分选档位,当分选功能打开时,此处显示会 P1、P2、P3 或 FL;

图 4.1.1 测量显示界面 (分选功能打开时)

: U 盘连接图标, U 盘连接成功时,显示;未连接 U 盘时,不显示该图标。

测试界面设置:

在测试界面下,可以快捷地对主要数据进行设置。可以设置的选项包括: 触发,速度, 比较方式,量程,讯响和清零值;

以下以触发设置为例:

- 按光标键的上、下键,选中触发选项,按导航键的中间的确认键进入触发模式的选项。
 再按上、下键选中要选择的选项,再按确认键完成设置。
- 也可以通过触摸屏直接点击进行设置。触摸要设置的选项,要设置的选项显示反选,再 按右边的要设置的状态,则设置完成。

余下的选项的设置方法和第一项设置方法相同。快捷设置的数据,关机不保存。

4.2 参数设置界面

在此界面中配合光标键选择需修改的参数,手指触摸修改;参数设置界面如下图所示:

图 4.2 参数设置界面

界面说明:

- ◇ 〈参数设置〉:提示该界面为【参数设置】界面;
- ◆ 触 发:可设置为自动或手动;自动为仪器根据测量速度进行测试,手动则需配合 面板 TRIG 键进行触发,按一次测一次;
- ✤ 速 度:可设置为慢速、中速或快速;
- ✤ 比较方式:可设置为绝对值或百分比;
- ◆ 量 程:可设置为自动或手动,手动档配合档位+、档位-使用;
- ◆ 讯 响:可设置关闭、合格或不合格;分别表示关闭讯响功能、被测件合格时讯响 或被测件不合格时讯响;
- ◆ 清零开关:可设置为关闭或打开;表示打开或关闭清零值;
- ◆ 标称值:在比较方式为百分比时,作为比较的基本比较值;在绝对值比较方式下, 此选项不用;
- ◆ 上限、下限:分选设置的上、下限值设定,根据实际产品进行设定;
- ◆ 分 选:设置对应档位的分选开关;设置 0N 时对应档位的分选功能打开,设置 0FF 时对应档位的分选功能关闭;

参数界面设置:

在参数界面下,可以设置的选项包括: 触发,速度,比较方式,量程,讯响,清零开 关,标称值和上、下限;

以下以触发设置为例:

- 按光标键的上、下键,选中触发选项,按导航键的中间的确认键进入触发模式的选项。
 再按上、下键选中要选择的选项,再按确认键完成设置。
- 也可以通过触摸屏直接点击进行设置。触摸要设置的选项,要设置的选项显示反选,再 按右边的要设置的状态,则设置完成。
- ▶ 或者直接点击需要修改的参数数值,选择右侧功能键的输入键,跳转出数值输入键盘界 面(如下图 4.2.1 所示),在此界面输入数值,按 Enter 键完成设置并退出该界面。

图 4.2.1 键盘输入界面

注:

三档比较打开时,上限 1 档到 3 档必须递增,下限 1 档到 3 档要递减。且同一档位的 上限值必须大于下限值。

1 档合格后,后面两个档位就不进行比较; 1 档不合格的话,则对 2 档进行比较,以此 类推; 当三个档位都不合格的时候,则测试失败,面板 FAIL 灯亮起。

低电流模式(LPR)说明: (此功能为选件)

く参設署教い		14-16-33	
触 发:自动	iR	响:关闭	测量显示
速 度: 慢速 比较方式: 绝对值	清零开 模	关:打开 式:LPR	参数设置
童 程:目初	标 称	值: 10.000 Ω	系统设置
上限 1档 10.100 Ω 2档 10.200 Ω	ΓΡΡΑ 9.900 Ω 9.800 Ω	分配 ON OFF	系统信息
3档 10.300 Ω	9.700 Ω	OFF	

低电流模式在参数设置界面选择,具体如下图所示: (4.2.2 所示)

图 4.2.2 低电流模式设置界面

◆ 模 式:可设置 LPR 或者 R; LPR 表示低电流测试模式, R 表示正常测试模式; LPR 模式打开时,主界面显示 LPR 标志,此模式下测量精度如下表所示:

低电流模式基本测量准确度(23±5℃,≦80%RH)

量程	2Ω	20Ω	200Ω	2kΩ		
电流	10mA	10mA 1mA		10µA		
开路电压		20mV	I			
分辨率	100μΩ	$1 \mathrm{m}\Omega$	$10 \mathrm{m}\Omega$	100mΩ		
▶ 准确度		0.2%+5				
温度系数		200pp	m			

准确度为1年的(23±5℃,≦80%RH)条件下的基本测量准确度。

超过温度条件需乘以温度修正系数 K。

4.3 系统设置界面

在此界面中配合光标键选择需修改的参数,手指触摸修改;系统设置界面如下图所示:

〈系统置数	\$t>		14:16:33	测量显示
USB U盘开关 语言	· 关闭 · 打开 · 中文	触摸音 串口 波特率	· 打开 · 关闭 · 9600	参数设置
触发电源	,内部	地址	: 255	系统设置
日期	21-08-19			系统信息
103 (FU	: 14.10.33			

图 4.3 系统设置界面

界面说明:

- ☆ 〈系统设置〉:提示该界面为【系统设置】界面;
- ◆ USB : 可设置为关闭、打开,用户根据操作需要自行选择;
- ◆ U盘开关:可设置为关闭、打开,用户根据操作需要自行选择;U盘功能打开时,先 将触发模式改为手动模式;
- ◆ 语 言:可设置为中文、ENGLISH,用户根据操作需要自行切换中/英文界面;
- ◆ 触发电源:可设置为内部、外部;内部时,端口电源内部输出;外部时,端口电压 外接输入,输入范围: +5V~+30V;
- ◆ 触摸音:可设置为关闭、打开,用于打开或关闭触摸屏按键音;
- ◆ **串 口** : 可设置为关闭、打开,用户自行选择是否打开 RS232 串口;
- ◆ 波特率:用于选择传输的波特率,可选择9600、19200、38400、96000、115200,
 用户根据操作需要自行选择;
- ◆ 地 址:可通过右侧软键设置设备地址,INCR+表示一位一位递进,INCR++表示+ 位十位递进,INCR-表示一位一位递减,INCR--表示十位十位递减;
- ✤ 日 期:当前实际日期,出厂前会设置好,若出现偏差,可在此处进行修改;
- ♦ 时 间:当前实际时间,出厂前会设置好,若出现偏差,可在此处进行修改;

第12页

4.4 系统信息界面

在此界面显示了仪器的型号和版本号,系统信息界面如下图所示:

图 4.4 系统信息界面

界面说明:

- ✤ 〈系统信息〉:提示该界面为【系统信息】界面;
- ✤ 仪器型号: 仪器的出厂型号;
- ◆ 软件版本 : 显示本台机器的软件版本号,随着仪器功能的改进和完善,技术的更新 及软件的升级,软件版本也会有所不同;
- ◆ 硬件版本:显示本台机器的硬件版本号,随着仪器功能的改进和完善,技术的更新 及硬件的升级,硬件版本也会有所不同;

4.5 注意事项及说明

- ◆ 开机预热:测试前必须开机预热 10 分钟,以等待仪器内部线路电参数稳定后再进行测 试。
- ◆ 零点及清零:当使用 20mΩ和 200mΩ两量程时,应首先清零再进行测试,而在其它量程 一般不必清零。测试时,使用者可先选定量程,再把测试夹互夹,使 S+端与 S-端直接 接触,D+端与 D-端直接接触,并保持良好接触,如若仪器显示不为零时,请按前面板 OADJ键,看到仪器的显示屏上显示"清零"。因为是全量程清零,所以也会看到量程 显示的变化。显示电阻的位置显示清零值。清零完成以后,显示电阻的位置显示-----。 由于仪器采用了四端测量法,所以使用者在清零时,一定要使仪器的 S+端与 S-端直接 接触,D+端与 D-端直接接触。具体地说:使两个测试夹有引出测试线的两金属片直接 接触,无引出测试线的两金属片直接接触。否则在 20mΩ和 200mΩ两量程时,由于仪器 增益极高,仪器会显示一非常不稳定的底数。

图 4.4 测试线对夹示意图

- ◆ 仪器内部一些集成电路及电子元器件用户不要随便更换,否则可能造成测量不正确。
- ◆ 分选功能说明:用户可使用本仪器的分选功能进行产品出厂的质量控制。本仪器可用直 读和百分比两种方式进行分选,分选分三个档分选,这样有助于进行对被测产品进行分 等级。在液晶屏上显示出来等级数,假如不合格,则进行不合格报警。

PASS 时仪器蜂鸣器会响(P-ON),用户也可在设置菜单中设置讯响为 OFF 来切断讯响或 设置为不合格讯响(F-ON)。

如欲察看或改变上下限值,按 PAGE 键进入设置状态。

第5章 接口说明

5.1 信号接口说明(HANDLER 口)

Handler 接口信号该接口主要用于仪器分选结果的输出。当仪器用于自动元件分选测试 系统中时,该接口提供与系统的联络信号和分选结果输出信号。分选结果输出对应比较器当 前档的比较结果输出。

此端口为一个 DB9 孔式插座, 其具体定义如下表:

PIN	信号名称	定义
1	TDIC	测量触发信号,下降沿有效。当仪器处于外部触发模式
	IRIG	时且 该信号有效时,仪器将执行一次触发测量。
2	PASS 2	档 2 比较结果输出信号,低有效。
3	FAIL	比较结果输出信号,低有效。
4	+5V	内部+5V 电源输出。
	EXT_GND	当"Handler"电源设置为"外部"时,该端口为外部
5		电源地;
		当 "Handler" 电源反直为 " 内部" 的,该端口为内部 由
6	PASS 1	档 1 比较结果输出信号, 低有效。
7	PASS 3	档 3 比较结果输出信号,低有效。
8	EOC	测量结束信号。低有效。
		当 <i>设置项</i> "Handler"电源设置为"外部"时,该端口
		为外部电源输入,电压范围+5V~+30V;
9	EXT_VCC	当 <i>设置项</i> "Handler"电源设置为"内部"时,该端口
		为内部电源输出。

时序图

图 5.1 信号时序图

注: P1/P2/P3 就是 PASS1/PASS2/PASS3 信号

ZC2516/A/B Handler 接口功能模拟电路

将仪器 Handler 模拟电路接到仪器的 Handler 接口,并设定仪器的分选中心值及上,下限值,并启动分选,且主机设定在手动功能,则以后每触发模拟电路的外触发键。 ZC2516/A/B 主机会执行一次测试,并将结果直接显示在模拟电路的 LOW, PASS 1, PASS 2, PASS 3, HIGH, EOC 的 LED 上,由此可以判定 Handler 接口功能是否正常。

5.2 RS232 接口指令格式

5.2.1 写指令

发送格式:

仪器	功能	地址	地址	寄存器	寄存器	字节	数据	 数据	CRC 低	CRC 高
地址	代码	高位	低位	数高位	数低位	总数	字节1	字节 n		

返回格式:

仪器地址	功能代码	地址高位	地址低位	寄存器数	寄存器数	CRC 低	CRC 高
				高位	低位		

- ◆ 仪器地址:是指仪器的本地地址,可以在仪器的通讯设定界面进行设定,取值范围为:
 1~32;
- ◆ 功能代码:本指令可以写一个数据,也可以写多个数据,所以其代码为: 0x10。
- ◆ 地址高位和地址低位:是指数据在仪器里的存储地址,该地址可以是真实的存储地址, 也可以是映射地址。
- ◆ 寄存器数高位和低位:表示本次操作写入寄存器的数量,每个寄存器的大小为2个字节。
- ◆ 字节总数:表示本次操作写入字节的总数,至少2个字节。
- ◆ 数据字节 1~数据字节 n:就是要将这些数据内容写入到仪器中去。
- ◆ CRC 高和 CRC 低: CRC16 位校验,我们采用查表法来进行 CRC 校验。

举例说明:设定锁定量程,自动量程在仪器里的存储地址为0x009,仪器编号为2,写入数据0

指令就是:

0x02	0x10	0x00	0x01	0x00	0x01	0x02	0x00	0x00	CRC 低	CRC 高
------	------	------	------	------	------	------	------	------	-------	-------

返回信息:

0x02 0x10 0x00 0x01	0x00 0x01	CRC 低 CRG	C高
---------------------	-----------	-----------	----

5.2.2 读指令

发送格式:

ſ								
	仪器地址	功能代码	地址高位	地址低位	寄存器	寄存器	CRC 低	CRC 高
					数高位	数低位		
	返回格	式:		· · · · ·		· · · · · ·		
	仪器地址	功能代码	字节总数	数据字节1		数据字节 n	CRC 低	CRC 高

- ◆ 仪器地址:是指仪器的本地地址,可以在仪器的通讯设定界面进行设定,取值范围为:
 1~32;
- ◆ 功能代码:本指令可以写一个数据,也可以写多个数据,所以其代码为: 0x03。
- ◆ 地址高位和地址低位:是指数据在仪器里的存储地址,该地址可以是真实的存储地址, 也可以是映射地址。
- ◆ 寄存器数高位和低位:表示本次操作写入寄存器的数量,每个寄存器的大小为2个字节。
- ◆ 字节总数:表示本次操作写入字节的总数,至少2个字节。
- ◆ 数据字节 1~数据字节 n:就是要将这些数据内容写入到仪器中去。
- ◆ CRC 高和 CRC 低: CRC16 位校验,我们采用查表法来进行 CRC 校验。

举例说明:设定锁定量程,自动量程在仪器里的存储地址为0x009,仪器编号为

指令就是:

0x02 0x03	0x00 0x09	0x00	0x02	CRC 低	CRC 高
-----------	-----------	------	------	-------	-------

返回信息:

0x02	0x10	0x04	数据字节1		数据字节 n	CRC 低	CRC 高
------	------	------	-------	--	--------	-------	-------

MODEBUS 指令表

参数地址	参数名称	写入数据	读/写
0x0001	锁定量程	0x00	写
	自动量程	0x01	写
0x0002	R1 量程(20mΩ)	0x01	写
	R2 量程(200mΩ)	0x02	写

	R3 量程(2Ω)	0x03	写
	R4 量程(20Ω)	0x04	写
	R5 量程(200Ω)	0x05	写
	R6 量程(2kΩ)	0x06	写
	R7 量程(20kΩ)	0x07	写
	R8 量程(200kΩ)	0x08	写
	R9 量程 (2MΩ)	0x09	写
0x0003	测试速度慢速	0x00	写
	测试速度快速	0x01	写
0x0004	关闭1档分选	0x00	写
	关闭2档分选	0x01	写
	关闭3档分选	0x02	写
0x0005	打开1档分选	0x00	写
	打开2档分选	0x01	写
	打开3档分选	0x02	写
0x0006	单次触发	0x00	写
	连续触发	0x01	写
0x0007	清零关闭	0x00	写
	清零打开	0x01	写
0x0008	触发		写
0x0009	查询测试结果		写
0x000A	设置分选标称值	float	写
0x000C	设置分选上限1	float	写
0x000E	设置分选上限 2	float	写
0x0010	设置分选上限 3	float	写
0x0012	设置分选下限1	float	写
0x0014	设置分选下限 2	float	写
0x0016	设置分选下限 3	float	写
0x0018	关闭蜂鸣器	0x00	写
	蜂鸣器不合格	0x01	写
	蜂鸣器合格	0x02	写

第6章 命令参考

6.1 简介

本节将对所有的ZC2516/A/B 后盖USB 命令进行详细介绍。这些命令均符合SCPI 标准命令集。

每个命令的介绍将包含如下内容:

命令名称: SCPI 命令的名称。

命令语法: 命令的格式包括所有必需的和可选的参数。

查询语法: 查询的格式包括所有必须的和可选的参数。

查询返回: ZC2516/A/B 的返回数据格式。

6.2 符号约定和定义

本章USB 命令的描述采用如下的符号约定和定义。

- < > 尖括号中的内容用于表示命令的参数。
- [] 方括号中的内容是可选的,可以省略。
- {} 通常花括号中包含几个可选参数,只能选择其中的一个参数。

在命令中将会用到的下列符号定义:

<NL> 换行符(十进制10)。

空格 ASCII 字符(十进制32)。

6.3 命令结构

ZC2516/A/B 命令分为两种类型:公用命令和SCPI 命令。公用命令由IEEE 标准定义适用于所有的仪器设备。 SCPI 命令采用树状结构,最高层称为子系统命令。只有选择了子系统命令后,该子系统命令的下层命令才有效。冒号(:)用于分隔高层命令和低层命令。 树状命令基本规则如下:

● 忽略大小写。

例如,

LIMIT:STANDARD = limit:standard = LiMiT:Standard

● 空格(→ 表示一个空格) 不能位于冒号的前后。

例如,

错误: LIMIT^{\U}: \USTANDARD

正确: LIMIT:STANDARD

● 命令后面加一个问号(?) 构成该命令的查询命令。

例如,

LIMIT:STANDARD ?

6.4 命令缩写规则

每个命令和特性参数至少拥有两种拼写形式,缩写形式和全拼形式。有些时候两种拼写 方式完全相同。遵守以下规则进行缩写。

● 如果单词的长度为四个字母或少于四个字母,则缩写形式和全拼形式相同。

● 如果单词的长度大于四个字母,

如果第四个字母是个元音字母,那么缩写形式为该单词的前三个字母。

如果第四个字母是个辅音字母,那么缩写形式为该单词的前四个字母。

例如:

LIMIT 可缩写成LIM。

RANGE 可缩写成RANG。

6.5 命令题头和参数

ZC2516/A/B 控制命令包含命令题头和相关参数。命令题头可以是全拼或缩写形式。使用 全拼方式便于理解命令的意思,而使用缩写方式可以提高计算机输入效率。参数可以为如下 两种形式之一。用空格来分隔命令和命令的参数。

● 字符数据和字符串数据

字符数据由ASCII 字母构成。缩写规则与命令题头相同。

● 数值数据

整数(NR1), 定点数(NR2), 或浮点数(NR3). 数值范围为±9.9E37。

第 21 页

NR1 举例如下: 123 +123 -123 NR2 举例如下: 12.3 +1.234 -123.4 NR3 举例如下: 12.3E+5 123.4E-5

6.6 命令参考

6.6.1 TRIGer 命令

TRIGger 子系统命令集用于设定仪器的触发源,触发后的延时和触发仪器测量。 命令树:

:IMMediate 用于触发仪器测量一次。

命令语法: TRIGger[:IMMediate]

例如: WrtCmd("TRIG");

:SOURce 用于设定仪器的触发源模式,字符?可以查询当前的触发源模式。 命令语法:

TRIGger:SOURce <INTernal, MANual>

这里:

INTernal 仪器自动触发,是仪器的默认设置。

第22页

MANual 在面板按 TRIGGER 键触发。

例如: WrtCmd("TRIG:SOUR MANual");

查询语法: TRIGger:SOURce ?

查询返回: <INTernal, MANual> <NL^END>

6.6.2 APERture 命令

APERture 子系统命令集主要用于设定测量的速度。字符?可以查询当前的测量速度。 命令树:

APERture —	FAST
	MEDium
	SLOW1
	SLOW2

:APERture 用于设定仪器测量速度,字符?可以查询当前的测量速度。

命令语法:

APER <FAST, MEDium, SLOW1 或 SLOW2>

例如: WrtCmd("APERture SLOW1"); 设定仪器的自校准模式为 SLOW。

查询语法: APERture?

查询返回: <FAST, MEDium, SLOW1 或 SLOW2> <NL END>

6.6.3 FUNCtion 子系统命令集

FUNCtion 子系统命令集主要用于设定仪器的,"量程","测量模式","自校准模式"等。字符?可以查询当前的页面。

命令树:

:IMPedance:RES:RANGe 用于设定仪器普通电阻测量模式的量程,字符?可以查询当前 普通电阻测量模式的量程参数。

命令语法:

FUNCtion:IMPedance:RES:RANGe

这里,可以是被测件的阻抗大小,也可以是具体的量程值。其数据格式为

NR1, NR2, NR3, = 0 到 2E+6。

例如: WrtCmd("FUNC: IMP: RES: RANG 123"); 用于设定仪器普通电阻测量模式的量程 为 200 Ω。

查询语法: FUNCtion: IMPedance: RES: RANGe?

查询返回: <value><NL^END>

这里, <value>可以是:

ZC2516: 20.000E-3, 200.00E-3, 2000.0E-3, 20.000E+0, 200.00E+0,

2000.0E+0, 20.000E+3, 200.00E+3, 2. 0000E+6

ZC2516A: 200.00E-3, 2000.0E-3, 20.000E+0, 200.00E+0,

2000.0E+0, 20.000E+3, 200.00E+3

ZC2516B: 20.000E-3, 200.00E-3, 2000.0E-3, 20.000E+0, 200.00E+0,

2000.0E+0, 20.000E+3

:IMPedance:RES:RANGe:AUTO 用于设定仪器普通电阻测量模式的量程自动选择方式,字符?可以查询当前的量程状态。

命令语法:

: IMPedance: RES: RANGe: AUTO

OFF

ON

例如: WrtCmd("FUNC: IMP: RES: RANG: AUTO ON"); 用于设定仪器普通电阻测量模式的量程为自动。

查询语法: FUNCtion: IMPedance: RES: RANGe: AUTO?

查询返回: <NR ON 或 OFF><NL ^END>

:IMPedance:LPR:RANGe 用于设定仪器低电阻测量模式的量程,字符?可以查询当前低 电阻测量模式的量程参数。

命令语法:

FUNCtion: IMPedance: LPR: RANGe

这里,可以是被测件的阻抗大小,也可以是具体的量程值。其数据格式为

NR1, NR2, NR3, = 0 到 2000。

例如: WrtCmd("FUNC: IMP: LPR: RANG 15");用于设定仪器低电阻测量模式的量程为 20Ω。

查询返回: <value><NL^END>

这里, <value>可以是:

2000.00E-3, 20.0000E+0, 200.000E+0, 2000.00E+0

:IMPedance:LPR:RANGe:AUTO 用于设定仪器低电阻测量模式的量程自动选择方式,字 符? 可以查询当前的量程状态。

命令语法:

ON:IMPedance:LPR:RANGe:AUTO

OFF

例如: WrtCmd("FUNC: IMP:LPR: RANG: AUTO ON"); 用于设定仪器低电阻测量模式的量程为 自动。

查询语法: FUNCtion: IMPedance: LPR: RANGe: AUTO?

查询返回: <NRON 或 OFF><NL ^END>

:ADJust 用于执行或清除 0 ADJ

清除 0 ADJ 数据

命令语法

FUNCtion:ADJust:CLEAr

执行 0 ADJ 操作

命令语法:

FUNCtion: ADJust?

返回值: <NR1><NL^END>

<NR1>= 1 或 0

0: 表明 0 ADJ 成功完成,成功完成后会打开 0 ADJ

1: 表明在 0 ADJ 过程中, 电阻测量值超过了 4,00 dgt, 即执行失败

6.6.4 BIN 命令集

BIN 子系统命令集用于设定仪器的档比较功能,包括档状态开关、讯响模式、极限方式等档参数的设定。

命令树:

:BIN[:STATe]用于设定仪器比较的状态,字符?可以查询当前的档比较状态。

命令语法:

:BIN[:STATe] <ON 或 OFF>

例如: WrtCmd(":BIN:STAT ON"); 打开仪器的档比较功能。

查询语法: :BIN:STATe?

查询返回: <NR ON 或 OFF><NL ^ END>

:BIN:BEEPer 用于设定仪器档比较的讯响模式,字符?可以查询当前的档讯响模式。 命令语法;

:BIN:BEEPer <OFF、NG 或 GD>

这里: OFF:关闭档讯响

NG:当有一个或更多的档比较结果为不合格时讯响

GD: 所有档的比较结果都为合格时讯响

例如: WrtCmd(":BIN:BEEP GD");设定仪器的比较讯响模式为 GD。

查询语法: :BIN:BEEPer?

查询返回: <OFF、NG 或 GD><NL[^]END>

:BIN:MODE 用于设定仪器档比较功能的极限方式,字符?可以查询当前设定的极限方式。 命令语法:

BIN:MODE < ATOLerance 或 PTOLerance >

这里:

ATOLerance: 设定档极限方式为绝对误差方式

PTOLerance: 设定档极限方式为相对误差方式

例如: WrtCmd("BIN: MODE ATOL")设定档极限方式为绝对误差方式

查询语法: BIN: MODE?

查询返回: <ATOL 或 PTOL><NL[^]END>

:BIN:UPPer 用于设定仪器特定档的上限值,字符?可以查询特定档设定的上限值。 命令语法:

BIN:UPPer<Bin NO.> , < Upper threshold >

这里:

<Bin NO.>= 1 到 3(NR1) 指定的档号,即特定档

<Upper threshold> = 0 到 2.2E+6 (NR3) 特定档的上限值 单位 "Ω"

例如: WrtCmd("BIN: UPP 1, 2000") 设定仪器 1 档的上限值为 2000 Ω

注意:同一档的上限值要大于等于下限值!

第 27 页

查询语法: BIN: UPPer? <Bin NO.>

查询返回: <Upper threshold><NL^END>格式和单位同上

注:如果该上限不存在时,返回值为"+9.90000E+37"

: BIN:LOWer 用于设定仪器特定档的下限值,字符?可以查询当前特定档设定的下限值。 命令语法:

BIN: LOWer <Bin NO.>, < Lower threshold >

这里:

<Bin NO>= 1 到 3 (NR1) 指定的档号,即特定档

<Lower threshold> = 0 到 2.2E+6 (NR3) 特定档的下限值 单位 "Ω"

例如: WrtCmd("BIN:LOW 1,1800") 设定仪器 1 档的下限值为 1800Ω

注意: 同一档的下限值要小于等于上限值!

查询语法: BIN:LOWer? <Bin NO.>

查询返回: <Lower threshold><NL[^]END>格式和单位同上

注:如果该下限不存在时,返回值为"+9.90000E+37"

: BIN: REFerence 用于设定仪器特定档的标称值,字符?可以查询当前特定档设定的标称值。

命令语法:

BIN: REFerence <Bin NO.>, <Reference Resistance> 这里: <Bin NO.>= 1 到 3 (NR1) 指定的档号,即特定档 <Reference Resistance> = 0 到 2.2E+6 (NR3) 特定档的标称值 单位"Ω" 例如: WrtCmd("BIN:REF 1,20E+3") 设定仪器 1 档的标称值为 20kΩ

查询语法: BIN: REFerence? <Bin NO.>, 查询返回: < Reference Resistance ><NL^{*}END>格式和单位同上 注: 如果该标称值不存在时,返回值为 "+9.90000E+37"

第28页

```
: BIN:PERCent 用于设定特定档的容差,字符?可以查询当前特定档设定的容差。
命令语法:
BIN:PERCent<Bin NO.>,<Tolerance(%)>
这里:
<Bin NO.>= 1 到 3 (NR1) 指定的档号,即特定档
<Tolerance(%)> = 0 到 99.999 (NR2) 特定档的容差 单位 "%"
例如: WrtCmd("BIN:PERC 1,10") 设定仪器 1 档的容差为 10%
查询语法: BIN: PERCent? <Bin NO.>,
查询返回: < Tolerance(%) ><NL<sup>^</sup>END>格式和单位同上
```

```
注: 如果该容差不存在时,返回值为"+9.90000E+37"
```

: BIN:ENAB1e 用于设定档功能的使能掩码,字符? 查询当前档功能的使能位。 命令语法:

```
BIN: ENABle <Enable Mask>
这里:
<Enable Mask>= 0 到 7(NR1) 使能掩码(十进制)
```

把某些位置 1,即把对应的档使能

位号	2	1	0
档号	BIN3	BIN2	BIN1

例如: WrtCmd("BIN:ENAB 6") 使能 BIN2 和 BIN3

查询语法: BIN: ENABle?,

查询返回: < Enable Mask ><NL[^]END>格式和单位同上

:BIN: RESult 用于查询仪器的最后一次的档比较结果。

查询语法: BIN:RESult?

第 29 页

查询返回: < NR1> <NL[^]END>

这里

< NR1> = 0 到 7

当某档的判断结果为"GD"时,对应的为置 1

位号	2	1	0
档号	BIN3	BIN2	BIN1

例如< NR1> = 4 时,所有档中,只有 BIN3 判断的结果为 "GD"

6.6.5 SYSTem 命令集

SYSTem 子系统命令集用于设定仪器的系统功能,包括 USB 开关、U 盘开关、按键音开关、触摸按键音开关等。

命令树:

:SYSTem:USB 用于设定仪器 USB 开关状态,字符?可以查询当前的触摸音状态。命令语法:

:SYSTem:USB <ON 或 OFF>

例如: WrtCmd(":SYST:USB ON"); 打开仪器的 USB 保存状态。

查询语法::SYST:USB?

查询返回: <USB ON 或 OFF><NL[^]END>

:SYSTem:KEYB 用于设定仪器按键音的开关状态,字符?可以查询当前的触摸音状态。命令语法:

:SYSTem:KEYB <ON 或 OFF>

例如: WrtCmd(":SYST:KEYB ON"); 打开仪器的按键音。

查询语法::SYST:KEYB?

查询返回: <KEYB ON 或 OFF><NL[^]END>

:SYSTem:TOUB 用于设定仪器触摸音状态,字符?可以查询当前的触摸音状态。 命令语法:

:SYSTem:TOUB <ON 或 OFF>

例如: WrtCmd(":SYST:TOUB ON"); 打开仪器的触摸音。

查询语法::SYST:TOUB?

查询返回: <TOUB ON 或 OFF><NL[^]END>

:SYSTem:LFR 用于设定仪器的电源频率,字符?可以查询仪器当前的电源频率。命令语法:

:SYSTem:LFR <50 或 60>

例如: WrtCmd(":SYST:LFR 50"); 设定仪器的电源频率为 50Hz。

查询语法: :SYST: LFR?

查询返回: <50或60><NL[^]END>

50: 当前仪器的电源频率为"50Hz"

60: 当前仪器的电源频率为"60Hz"

第 31 页

附录

出厂配件:

1.	ZC2516/A/B 仪器	1台
2.	四端测试电缆	1付
3.	三芯电源线	1根
4.	保险丝(电源插座内)	2 只
5.	使用说明书	1份
6.	产品合格证	1张
7.	测试报告	1张

用户收到仪器后,开箱检查应核对上述内容,若发生遗缺,请立即与本公司或经营部门 联系。

保修期:使用单位从本公司购买仪器者,自公司发运日期起计算,从经营部门购买者,自经 营部门发运日期起计算,保修期十二个月。本公司对所有发外的仪器实行终身维修的服务。 保修期内,由于使用者操作不当而损坏仪器者,维修费由用户承担。